11-4 Inequalities

An inequality states that two quantities either are not equal or may not be equal. An inequality uses one of the following symbols:

Symbol	Meaning	Word Phrases	Graph	Example
$<$	$\underline{\text { Less than }}$	Fewer than, below		
$>$	Greater than	More than, above		
\leq	Less than or equal to	At most, no more than		
\geq	Greater than or equal to	At least, no less than		

11-4 Inequalities

- An inequality that contains a variable is an algebraic inequality.
- An inequality may have more than one solution. Together, all of the solutions are called the solution set.
- You can graph the solutions of an inequality on a number line.
- If the variable is "greater than" or "less than" a number, then that number is indicated with an open circle.
- If the variable is "greater than or equal to" or "less than or equal to" a number, then that number is indicated with a closed circle.

11-4 Inequalities

Symbol	Graph	Example
(open circle)		$n<3$
(open circle)		$a>5$
(closed circle)		$b \leq 3$
		$a \geq-4$

When you add or subtract the same number on both sides of an inequality, the resulting statement will still be true.

You can find solution sets of inequalities the same way you find solutions of equations, by isolating the variable.

Solve. Then graph the solution set on a number line.
A. $n-7 \leq 15$

$$
\begin{gathered}
\begin{array}{c}
n-7 \leq \\
+7
\end{array} \\
n \leq 7
\end{gathered} \quad \text { Add } 7 \text { to both sides. }
$$

Draw a closed circle at 22 then shade the line to the left of 22 .

Solve. Then graph the solution set on a number line.

$$
\begin{aligned}
& \text { B. } a-10 \geq-3 \\
& a-10 \geq-3 \\
& +10+10 \\
& \text { Add } 10 \text { to both sides. } \\
& a \geq 7 \quad \text { Draw a closed circle at } 7 . \\
& \text { Then shade the line to the right. }
\end{aligned}
$$

You can see if the solution to an inequality is true by choosing any number in the solution set and substituting it into the original inequality.

11-5 Solving Inequalities by Adding or Subtracting

Check: Solution: $n \leq 22$
A. $n-7 \leq 15$

Substitute in a number less than
or equal to 22.

$$
\begin{array}{ll}
10-7 \leq 15 & \text { We choose } 10 . \\
3 \leq 22 &
\end{array}
$$

$$
3 \leq 22
$$

Check: Solution: $a \geq 7$
B. $A+-10 \geq-3$
$12+-10 \geq-3 \quad$ We choose 12.
$2 \geq-3$ than or equal to 7

Substitute in a number greater

$$
2 \geq-3
$$

When you multiply or divide both sides of an inequality by the same positive number, the statement will still be true.

When you multiply or divide both sides by the same negative number, you need to reverse the direction of the inequality symbol for the statement to be true.

$$
-4<2
$$

$$
\begin{aligned}
(3)(-4) & <(3)(2) \\
-12 & <6
\end{aligned}
$$

$$
-4<2
$$

$$
(-3)(-4)>(-3)(2)
$$

$$
12>-6
$$

11-6 Solving Inequalities by Multiplying or Dividing

Solve and check.
Check:

$$
\begin{aligned}
& \text { C. } \frac{c}{4} \leq-4 \\
& \frac{C}{4} \leq-4 \\
& \frac{C}{4} \leq-4 \\
& \text { (4) } \frac{C}{4} \leq(-4)(4) \\
& c \leq-16 \\
& -5 \leq-4
\end{aligned}
$$

Solve. Check your answer.

$$
\text { D. } \begin{array}{rlr}
-\mathbf{7} \boldsymbol{b}<\mathbf{5 6} & \\
\frac{-7 b}{-7} & >\frac{56}{-7} \quad \begin{array}{l}
\text { Divide both sides by }-7 \text {, and } \\
\text { reverse the inequality symbol. }
\end{array} \\
b & >-8
\end{array}
$$

Check:

$$
\begin{aligned}
-7 b & <56 \\
-7(0) & <85 \\
0 & <85
\end{aligned}
$$

11-7 Solving Two-Step Inequalities

When you solve two-step and multi-step equations, you can use the order of operations in reverse to isolate the variable.

You can use the same process when solving twostep and multi-step inequalities.

11-7 Solving Two-Step Inequalities

Solve. Then graph the solution set on a number line.
E. $\frac{y}{2}-6>1$

$$
\frac{y}{2}-6>1
$$

$$
+6+6 \quad \text { Add } 6 \text { to both sides. }
$$

$$
\frac{y}{2} \quad>7
$$

(2) $\frac{y}{2}>7$ (2) Multiply both sides by 2.

11-7 Solving Two-Step Inequalities

Check: y > 14
E. $\frac{y}{2}-6>1$

$$
\frac{20}{2}-6>1
$$

Choose any number greater than 14 to substitute in and check!

$$
10-6>1
$$

$$
4>1
$$

11-7 Solving Two-Step Inequalities

Solve. Then graph the solution set on a number line.

$$
\begin{aligned}
& \text { F. }-9 x+4 \leq 31 \\
& -9 x+4 \leq 31 \\
& -4-4 \quad \text { Subtract } 4 \text { from both sides. } \\
& -9 x \leq 27 \\
& \frac{-9 x}{-9} \geq \frac{27}{-9} \\
& \text { Divide both sides by }-9 \text {, and } \\
& \text { reverse the inequality symbol. } \\
& \left.\right)
\end{aligned}
$$

11-7 Solving Two-Step Inequalities

Check: $x \geq-3$

$$
\text { F. }-9 x+4 \leq 31
$$

$$
-9(0)+4 \leq 31
$$

$$
0+4 \leq 31
$$

$$
4 \leq 31
$$

Choose a number greater than or equal to -3 to substitute in for x.

11-7 Solving Two-Step Inequalities

Solve. Then graph the solution set on a number line.

11-7 Solving Two-Step Inequalities

Check: w <-3

$$
\text { G. } \begin{aligned}
\mathbf{3 (w + 7)} & <-5 \mathbf{w}-\mathbf{3} \\
3(-5+7) & <-5(-5)-3 \\
3(2) & <-5(-5)-3 \\
6 & <-5(-5)-3 \text { Choose a numstitute in for } w . \\
6 & <25-3 \\
6 & <22
\end{aligned}
$$

