11-4 Inequalities

An **inequality** states that two quantities either are not equal or may not be equal. An inequality uses one of the following symbols:

Symbol	Meaning	Word Phrases	Graph	Example
<	<u>Less</u> than	<u>Fewer</u> than, below		
>	<u>Greater</u> than	<u>More</u> than, above		
¥I	Less than or <u>equal</u> to	At <u>most</u> , no more than		
≥	Greater than or <u>equal</u> to	At <u>least</u> , no less than		

11-4 Inequalities

- An inequality that contains a variable is an <u>algebraic</u> <u>inequality</u>.
- An inequality may have more than one solution. Together, all of the solutions are called the <u>solution set</u>.
- You can graph the solutions of an inequality on a <u>number</u>
 <u>line.</u>
- If the variable is <u>"greater than</u> or <u>"less than</u> a number, then that number is indicated with an <u>open</u> circle.
- If the variable is <u>"greater than or equal to"</u> or <u>"less than</u> <u>or equal to"</u> a number, then that number is indicated with a <u>closed</u> circle.

When you <u>add</u> or <u>subtract</u> the same number on both sides of an inequality, the resulting statement will still be true.

You can find solution sets of **inequalities** the same way you find solutions of **equations**, by isolating the **variable**.

Solve. Then graph the solution set on a number line.

Solve. Then graph the solution set on a number line.

B. $a - 10 \ge -3$ $a - 10 \ge -3$ + 10 + 10 Add 10 to both sides. $a \ge 7$ Draw a closed circle at 7. Then shade the line to the right.

You can see if the <u>solution</u> to an inequality is true by choosing any number in the solution set and <u>substituting</u> it into the <u>original</u> inequality.

Check:		Solution:	n	≤ 2	22	
Α.	<i>n</i> – 7 ≤ 1	5		Subst or equ	itute ir ual to 2	n a number less than 22.
	10−7≤	15		We ch	noose .	10.
	3 ≤	22		3 ≤	22	

Check:	Solution: a	1	2	7
B. <i>A</i> + -10 ≥	-3		Subs than	titute in a number greater or equal to 7
<i>12 +</i> -10 ≥	: -3		We d	choose 12.
2 ≥	-3		2	≥ -3 ✓
< <u>+</u> −4 −3 −2	-1 0 1 2)	+ + 3 4	5 6 7 8 9 10

When you **multiply** or **divide** both sides of an inequality by the same **positive** number, the statement will still be **true**.

When you <u>multiply</u> or <u>divide</u> both sides by the same <u>negative</u> number, you need to <u>reverse</u> the direction of the inequality symbol for the statement to be true.

11-6 Solving Inequalities by Multiplying or Dividing

-4 < 2 $(3)(-4) \leq (3)(2)$ -12 < 6-4 < 2(-3)(-4) > (-3)(2)12 > -6

Copyright © by Holt, Rinehart and Winston. All Rights Reserved.

Course 2

11-6 Solving Inequalities by Multiplying or Dividing

11-6 Solving Inequalities by Multiplying or Dividing

Solve. Check your answer.

D. -7b < 56 $\frac{-7b}{-7} > \frac{56}{-7}$ Divide both sides by -7, and reverse the inequality symbol. b > -8

When you solve two-step and multi-step <u>equations</u>, you can use the order of operations in <u>reverse</u> to isolate the <u>variable</u>.

You can use the same process when solving twostep and multi-step **inequalities**.

Solve. Then graph the solution set on a number line.

Check: **y** > 14

Choose any number greater than 14 to substitute in and check!

Course 2

Solve. Then graph the solution set on a number line.

Check: $x \ge -3$

F. $-9x + 4 \le 31$ $-9(0) + 4 \le 31$ $0 + 4 \le 31$ $4 \le 31$

Choose a number greater than or equal to -3 to substitute in for x.

Solve. Then graph the solution set on a number line.

G.
$$3(w + 7) < -5w - 3$$

 $3(w + 7) < -5w - 3$
 $3w + 21 < -5w - 3$
 $+5w$ $+5w$
 $8w + 21 < -3$
 -21 -21
 $\frac{8w}{8} < \frac{-24}{8} -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8$
 $w < -3$

Check: w < -3

G.	3(w + 7)	<	-5w – 3	
	3(<mark>-5</mark> + 7)	<	-5 <mark>(-5)</mark> – 3	
	3(2)	<	-5 <mark>(-5)</mark> – 3	Choose a number less than -3 to
	6	<	-5 <mark>(-5)</mark> – 3	substitute in for w.
	6	<	25 – 3	
	6	<	22	