Inequalities Guided Notes

Graphing Inequalities

• An ______ states that two quantities either are not equal or may not be equal. An inequality uses one of the following symbols:

Symbol	Meaning	Word Phrase	Graph	Example
<	 than	than, below	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
>	than	than, above	4 + + + + + + + + + + + + + + + ▶ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8	a > 5
S	Less than or to	At, no more than		
2	Greater than or to	At, no less than	-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8	a ≥ - 4

- An inequality may have more than one solution. Together, all of the solutions are called the ______.
- You can graph the solutions of an inequality on a _______.
- If the variable is "______than" or "______than" a number, then that number is indicated with an ______circle.
- If the variable is "greater than or ______to" or "less than or ______to" a number, then that number is indicated with a ______ circle.

Adding and Subtracting Inequalities

- When you ______ or ______ the same number on both sides of an inequality, the resulting statement will still be true.
- You can find solution sets of ______ the same way you find solutions of ______, by isolating the ______.

Example	Solve	Graph	Check		
A. n – 7 ≤ 15					
B. <i>a</i> + -10 ≥ −3					
• You can see if the to an inequality is true by choosing any number in the					

 You can see if the ______to an inequality is true by choosing any r solution set and ______ it into the ______ inequality.

Name:

Multiplying and Dividing Inequalities

- When you ______ or ______both sides of an inequality by the same number, the statement will still be .
- When you ______ or _____ both sides by the same ______ number, you need to ______ the direction of the inequality symbol for the statement to be true.

Example	Solve	Graph	Check
C. <u>¢</u> ≤ − 4			
D. −7 <i>b</i> < 56			

Solving Two-Step and Multi-Step Inequalities

- When you solve two-step and multi-step_____, you can use the order of operations in ______ to isolate the ______.
- You can use the same process when solving two-step and multi-step ______.

Example	Solve	Graph	Check
$\frac{y}{2} - 6 > 1$			
F. −9 <i>x</i> + 4 ≤ 31			
G. 3(w + 7) < -5w – 3			