\qquad
\qquad

Inequalities Guided Notes

Graphing Inequalities

- An \qquad states that two quantities either are not equal or may not be equal. An inequality uses one of the following symbols:

Symbol	Meaning	Word Phrase	Graph	Example
<		\qquad than, below	$\begin{array}{ccccccc}\mid & \mid & \mid & \mid & \mid & \mid & \phi \rightarrow \\ -3 & -2 & -1 & 0 & 1 & 2 & 3\end{array}$	
>	than	\qquad than,		$a>5$
\leq	Less than or \qquad to	At \qquad no more than		
\geq	Greater than or	At \qquad no less than		$a \geq-4$

- An inequality that contains a variable is an \qquad .
- An inequality may have more than one solution. Together, all of the solutions are called the \qquad .
- You can graph the solutions of an inequality on a \qquad .
- If the variable is " \qquad than" or " \qquad than" a number, then that number is indicated with an \qquad circle.
- If the variable is "greater than or \qquad to" or "less than or \qquad to" a number, then that number is indicated with a \qquad circle.

Adding and Subtracting Inequalities

- When you \qquad or \qquad the same number on both sides of an inequality, the resulting statement will still be true.
- You can find solution sets of \qquad the same way you find solutions of
\qquad , by isolating the \qquad .

Example	Solve	Graph	Check
A. $n-7 \leq 15$			
B. $a+-10 \geq-3$			

- You can see if the \qquad to an inequality is true by choosing any number in the solution set and \qquad it into the \qquad inequality.
- When you \qquad or \qquad both sides of an inequality by the same
\qquad number, the statement will still be \qquad .
- When you \qquad or \qquad both sides by the same \qquad number, you need to \qquad the direction of the inequality symbol for the statement to be true.

Example	Solve	Graph	Check
C. $\frac{c}{4} \leq-4$			
D. $-7 b<56$			

Solving Two-Step and Multi-Step Inequalities

- When you solve two-step and multi-step \qquad you can use the order of operations in \qquad to isolate the \qquad .
- You can use the same process when solving two-step and multi-step \qquad .

Example	Solve	Graph	Check
E.			
$\frac{y}{2}-6>1$			
F. $-9 x+4 \leq 31$			
G. 3(w + 7) <-5w-3			

